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Abstract. We investigate the allowed configurations in the stationary state of the cellular
automaton model for single-lane traffic. It is found that certain states in the configuration space
cannot be reached if one uses parallel dynamics. These so-calledGarden of Eden(GoE) states
do not exist for random-sequential dynamics and are responsible for the strong short-ranged
correlations found in parallel dynamics. By eliminating the GoE states we obtain a simple and
effective approximative description of the model. Forvmax= 1 the exact solution is recovered.
For vmax= 2 this elimination leads to much higher values of the flux compared to the mean-field
result which are in good agreement with Monte Carlo simulations.

1. Introduction

The description of traffic flow using cellular automata (CA) is quite successful [1], despite
the simplicity of the model [2]. CA are, by design, ideal for large-scale computer
simulations. This fact has already been used for the simulation of urban traffic in various
cities, see for example [3–5]. On the other hand, analytical descriptions are difficult. In
[6–8] we have developed several methods which yield an approximate description of the
stationary state. In certain limits (e.g.vmax = 1 or p → 0), these methods even become
exact (see [9] for a review). These approaches are based on a microscopic description
which takes into account certain correlations. Part of the difficulties come from the fact
that one uses parallel dynamics. This introduces a non-local aspect into the problem since
the whole lattice is updated at once. On the other hand, random-sequential dynamics is
much simpler to treat analytically. Forvmax = 1, for instance, simple mean-field theory
gives already the correct steady state, i.e. there are no correlations. Here we propose a rather
simple analytical approach which exhibits the main difference between parallel and random-
sequential dynamics very clearly. For parallel dynamics not all states of the configuration
space can be reached by the dynamics, some are ‘dynamically forbidden’. This is not the
case for random-sequential dynamics.

For completeness we recall the definition of the CA model for single-lane traffic [2].
The street is divided intoL cells which can be occupied by at most one car or be empty.
The state of each car is described by an internal parameter (‘velocity’) which can take on
only integer valuesv = 0, 1, 2, . . . , vmax. The state of the system at timet + 1 can be
obtained from the state at the previous timet by applying the following four simple update
steps to all cars at the same time (parallel dynamics):
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R1. Acceleration:

vj (t)→ vj (t + 1
3) = min{vj (t)+ 1, vmax}.

R2. Braking:

if vj (t + 1
3) > dj (t) thenvj (t + 1

3)→ vj (t + 2
3) = dj (t).

R3. Randomization:

vj (t + 2
3)

p→vj (t + 1) = max{0, vj (t + 2
3)− 1} with probabilityp.

R4. Driving:

car j movesvj (t + 1) cells.

Heredj (t) denotes the number of empty cells in front of carj , i.e. the gap or headway. In
the following it will be important thatvj (t) is just the number of cells that carj moved in
the timestept − 1→ t .

In [7] we investigated a microscopic mean-field theory (MFT) for this kind of cellular
automaton. The most important result was that the flows obtained are much too small
compared to computer simulations. The reason is that MFT cannot account for the ‘particle–
hole attraction’ found in the stationary state, i.e. the probability to find an empty cell in
front of a (moving) car isenhancedcompared to the mean-field result. This effect is taken
into account by then-cluster approximation introduced in [6, 7]. Here the lattice is divided
into clusters of lengthn which overlapn − 1 cells†. It turned out that the two-cluster
approximation isexact for vmax= 1. Forvmax= 2 small cluster sizes (e.g.n = 4) gave an
excellent agreement with numerical results for the flow.

In [8] an alternative analytic approach was introduced, the so-called car-oriented mean-
field (COMF) theory. Here the dynamical variables are not the occupancies of the cells
but the gapsdj (t) between consecutive cars. In the COMF theory these gaps are treated as
being independent. Again we found that COMF theory is exact forvmax= 1. Forvmax= 2
and the ‘traditional’ valuep = 0.5 the flow obtained from the COMF theory is comparable
to the three-cluster result. However, the COMF theory seems to become exact in the limit
p→ 0, in contrast to the two-cluster approach [9].

In the present paper we present a rather simple extension of MFT. The key idea is
a reduction of the configuration space by removing all states which cannot by reached
dynamically. In the context of cellular automata these states are calledGarden of Eden
(GoE) statesor paradisical states. A simple example (see figure 1) forvmax = 2 is the
configuration(•, 1, 2) of two consecutive cells, where ‘•’ denotes an empty cell and the
numbers correspond to the velocities of the cars. Cars move from left to right. Obviously
the velocity is just the number of cells the car moved in the previous timestep. Therefore,
the configuration(•, 1, 2) could have evolved only from a state which has two cars in
the leftmost cell. Since double-occupations are not allowed in the present model, states
containing(•, 1, 2) are dynamically forbidden, i.e. they are GoE states.

Here we reinvestigate MFT forvmax = 1 andvmax = 2, but eliminate the GoE states.
This paradisical mean-field (pMF)theory will lead to a considerable improvement of the
results.

† MFT corresponds ton = 1.
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Figure 1. A Garden of Eden state for the model withvmax> 2.

2. Mean-field theory

Here we briefly review the MFT results forvmax = 1 andvmax = 2. A more complete
account along with a detailed derivation can be found in [7]. The densities of cars with
velocity v (v = 0, 1, . . . , vmax) in the stationary state is denoted bycv. Therefore, the full
density of cars is given byc = ∑vmax

v=0 cv. For convenience we also introduce the ‘hole’
density d = 1 − c and the abbreviationq = 1 − p. The flux (or current) is given by
f (c) =∑vmax

v=1 vcv.
For vmax= 1 the mean-field equations then read

c0 = (c + pd)c (1)

c1 = qcd (2)

so that the flux is simply given by

f
(1)
MF(c) = c1 = qc(1− c). (3)

For vmax= 2 the rate equations for the densities are given by

c0 = (c + pd)c0+ (1+ pd)c(c1+ c2) (4)

c1 = d[qc0+ (qc + pd)(c1+ c2)] (5)

c2 = qd2(c1+ c2). (6)

The solution

c0 = (1+ pd)c2

1− pd2
(7)

c1 = q(1− qd2)dc

1− pd2
(8)

c2 = q2d3c

1− pd2
(9)

yields for the flux

f
(2)
MF(c) = c1+ 2c2 = q(1+ qd2)dc

1− pd2
. (10)

Comparison with the results from Monte Carlo simulations shows that the MFT results
underestimate the flow considerably [7]. Therefore, strong short-range correlations exist
which increase the flow compared to the prediction of MFT. Using the exact solution for
the casevmax= 1 [6] one can demonstrate explicitly the existence of a strong particle–hole
attraction, i.e. the probability to find an empty cell in front of an occupied cell is enhanced
compared to the MFT result.

At first sight, this result is surprising. For random-sequential dynamics† it is known
[2] that MFT is exact forvmax= 1. Therefore, the origin of the correlations is the parallel

† In random-sequential dynamics in each timestep a cell which is updated is picked at random.
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update procedure. In the following we will see that the existence of the GoE states is
responsible for the differences between parallel and random-sequential dynamics.

3. GoE states forvmax = 1

The question of whether a state is a GoE state or not can be decided locally by investigating
just nearest-neighbour configurations. It turns out that GoE states are all states containing
the local configurations(0, 1) or (1, 1), i.e. a moving vehicle is directly followed by another
car. This is not possible as can be seen by looking at the possible configurations at the
previous timestep. The momentary velocity gives the number of cells that the car moved in
the previous timestep. In both configurations the first car moved one cell. Therefore, it is
immediately clear that(0, 1) is a GoE state since otherwise there would have been a doubly-
occupied cell before the last timestep. The configuration(1, 1) is also not possible since
both cars must have occupied neighbouring cells before the last timestep too. Therefore,
according to rule R2, the second car could not move.

We now modify the MFT equations (1) and (2) to take into account the existence of GoE
states. Following the procedure described in [7] it turns out that only (1) has to be modified.
Due to this modification the normalizationc0+ c1 = c is no longer satisfied automatically.
Therefore, a normalization constantN has to be introduced. The final equations are then
given by

c0 = N (c0+ pd)c (11)

c1 = Nqcd (12)

with the normalization

N = 1

c0+ d . (13)

Sincec0 + c1 = c we have only one independent variable for fixed densityc, for example
c1. Solving (11) and (12) forc1 we obtain

c1 = 1
2(1−

√
1− 4q(1− c)c). (14)

The flow is given byf (c) = c1 and we recover the exact solution for the casevmax = 1
[6].

This result confirms the expectations mentioned above. One can see clearly that the
difference between random-sequential and parallel dynamics is the existence of GoE states
in the latter. After eliminating these GoE states, no correlations are left in the reduced
configuration space.

4. GoE states forvmax = 2

In this case more GoE states exist. In order to identify the GoE states it is helpful to note
that the rules R1–R4 implydj (t) = dj (t − 1)+ vj+1(t)− vj (t) and therefore

dj (t) > vj+1(t)− vj (t) (15)

vj (t) 6 dj (t − 1). (16)

The second inequality (16) is a consequence of R2.
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In the following we list the elementary GoE states, i.e. the local configurations which
are dynamically forbidden (cars move from left to right):

(0, 1), (0, 2), (1, 2), (0, •, 2) (17)

(1, 1), (2, 1), (2, 2), (1, •, 2), (2, •, 2) (18)

(0, •, •, 2). (19)

The numbers give the velocity of a vehicle in an occupied cell and• denotes an empty cell.
Using Monte Carlo simulations we have checked that there are no further elementary GoE
states for clusters up to 10 cells.

The elementary GoE states in (17) violate the inequality (15), and the configurations in
(18) violate (16). The state in (19) is a second-order GoE state. Going one step back in
time leads to a first-order GoE state since(0, •, •, 2) must have evolved from(0, v) (with
v = 1 or v = 2).

Again we can derive the pMF equations by modifying the method for the derivation of
the MF mean-field theory [7]. Taking into account only the first-order GoE states (17) and
(18) one obtains the following pMF equations:

c0 = N [c0c + pd(c0+ c1c)] (20)

c1 = N [pd2(c1+ c2)+ qd(c0+ c1c)] (21)

c2 = Nqd2(c1+ c2). (22)

The normalizationN ensuresc0+ c1+ c2 = c and is given explicitly by

N = 1

c0+ dc1+ d2c2
= 1

c0+ d(1− c2)
. (23)

Using (22) we can expressc2 throughc0 andc only:

c2 = 1

2d
(c0+ d −

√
(c0+ d)2− 4qd3(c − c0)). (24)

Inserting this result into (20) we obtain a cubic equation which determinesc0 in terms of
the parametersc andp:

αc3
0 + βc2

0 + γ c0+ δ = 0 (25)

where the coefficients are given by

α = −qd3− pd2+ qd − q (26)

β = (3p2− p − 1)d4+ (−p2− 3p + 1)d3+ (−p2+ p + 2)d2− 3qd + q (27)

γ = pcd[(−p2− 3p + 2)d3+ (p2+ p + 1)d2+ (2p − 3)d + q] (28)

δ = −(pcd)3. (29)

In principle the zeros of (25) can be determined explicitly. The physical solution is the one
in the interval [0, 1]. The flow can be calculated asf (c, p) = c1+2c1 wherec1 andc2 are
determined by (24) andc = c0+ c1+ c2.

We have also calculated the pMF equations which in addition take into account the
second-order GoE state (19). One has to modify the equations forc0 andc1 only (and the
normalization) by replacing the last term in (21) bypd{(c0 + c1)c + c0d(1− c2)} and the
last term in (21) byqd{(c0+ c1)c + c0d(1− c2)}. However, these modifications lead only
to minor changes in the results for the fundamental diagram (figure 2).
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Figure 2. Fundamental diagrams forvmax = 2 and p = 0.5 (left) and p = 0.1 (right).
Comparison of paradisical MF (full curve) with results from computer simulations (•) and the
naive MF approximation (dotted curve).

5. Discussion

We have presented an analysis of the allowed configurations in the CA model for traffic
flow. Due to the use of parallel dynamics not all configurations can be reached through
the dynamics. Eliminating these GoE states allowed us to improve the results of the naive
mean-field theory considerably.

GoE states can be characterized locally. We identified all elementary GoE configurations
for vmax = 1 andvmax = 2. It turns out that forvmax = 1 it is sufficient to investigate
only configurations of all clusters of two cells. Forvmax = 2 the largest elementary GoE
configuration consists of four neighbouring cells.

For vmax= 1 the PMF theory is able to reproduce the exact solution. This implies that
in the subspace without GoE states all configurations are equally probable. This has to be
compared with random-sequential dynamics. Hereall configurations are equally probable
and naive mean-field theory is exact. This means that the strong short-ranged correlations
found for parallel update are solely due to the use of parallel dynamics.

In fact one may speculate that this is rather general. The difference between random-
sequential and parallel update comes mainly from the existence of GoE states in the latter.
This implies that a method that ‘works’ for random-sequential dynamics (e.g. an exact
solution or good approximation) should also work for parallel dynamics, but now in the
subspace without GoE states.

For vmax = 2 the PMF theory yields a considerable improvement of the mean-field
results, but it does not become exact. One observes a qualitative difference to the case
vmax = 1, since now there are correlations present which cannot be explained by the
existence of GoE states.

The existence of GoE states gives a simple criterion for the quality of an approximation:
a good approximation should be able to account for all GoE states. This can be illustrated
for the casevmax = 1. The methods used previously for the exact solution are the two-
cluster approach [6, 7] and COMF theory [8]. Both methods are able to identify both GoE
states (0, 1) and (1, 1). For vmax = 2 one needs at least the four-cluster approximation to
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account for all GoE states (17)–(19). Indeed, the results of [6, 7] show that the four-cluster
results are in excellent agreement with simulation results. COMF theory is able to identify
all GoE states since all elementary GoE configurations consist of only two neighbouring
cars, i.e. there are no elementary GoE states with three vehicles.

Finally, we want to point out that the model is ergodic in the sense that for configurations
τ , τ ′ which appear in the stationary state with probabilitiesP(τ), P (τ ′) > 0 there is a non-
vanishing transition probabilityP(τ → τ ′). The existence of GoE states poses no problems
in computer simulations. If the initial state is a GoE state, it will become a non-GoE state
after the first timestep.

The method presented here is also applicable to other models. An interesting case is the
asymmetric exclusion process (ASEP) (see [10] and references therein), which is identical
to the model investigated here withvmax= 1, but with open boundary conditions where an
injection and/or removal of particles is possible. In [11] the existence of GoE states has
been used to obtain an approximative description of the deterministic limit of the ASEP
which is in excellent agreement with numerical results.

Part of this work has been performed within the research program of the
Sonderforschungsbereich 341 (Köln-Aachen-J̈ulich).
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